[image: image1.png]
NGOP CONFIGURATION LANGUAGE

 draft

ngop version v1.0

J.Fromm, K.Genser , T.Levshina, M.Mengel

Fermi National Accelerator Laboratory

[image: image2.png]
Table Of Contents
31. Introduction

42. Key Definitions

42.1 Host

42.2 Cluster

42.3 Monitored Element

42.4 System

42.5 System View

42.6 Monitored Object

42.7 State

52.8 Severity Level

52.9 Event

52.10 Status

62.11 Status Rules

62.12 Action

63. XML Document and DTD

64. Common XML Constructs in NGOP Configuration

64.1 Expansion Mechanism (<For> tag)

84.2 Expression (<Apply> tag)

94.3 System (<System> tag)

104.4 Monitored Element (<MonitoredElement> tag)

114.5 Action (<Action> tag)

115. Monitoring Agent

125.1 PlugIns Agent

175.2 Swatch Agent

186. NGOP Monitor

196.1 Common Configuration Files

236.2 NGOP Hierarchy Definition

257. Status Rule Set

267.1 Dependent List

287.2 Rule

318. Action Client

328.1 File authorized.xml

328.2 File action.xml

33Appendix A

33For DTD

34Apply DTD

34Action DTD

34PlugIns Agent DTD

35Swatch Agent DTD

36Service Class DTD

36Hosts In Clusters DTD

37Known Status DTD

37Monitored Hierarchy DTD

37Status Rule Set DTD

38Action Client DTD

1. Introduction

NGOP is a distributed monitoring system that provides active monitoring of software and hardware, customizable service-level reporting, and early error detection and problem prevention. NGOP provides persistent storage of collected data and is capable of executing corrective actions and sending notifications. NGOP is a framework for developing monitoring tools.

The NGOP product consists of several separate subsystems, such as:

· Monitoring Agent (MA) – observes the behavior of a particular software or hardware component, waits for some specific condition to occur, and when the condition is met sends an event describing the occurrence to the NGOP Central Server.
· NGOP Central Server (NCS) - collects events and action requests from Monitoring Agents, forwards them to the Archive Server and the corresponding Action Client; handles multiple Monitoring Clients, supplies them with requested information and accepts action requests.
· Configuration File Management Service (CFMS) - provides a central repository for configuration.
· Action Client – performs action upon request of authorized users.

· Archive Service – stores events and actions in an Oracle database, has a mechanism to rollout old events in the archive database to other storage (flat file for now) to keep the database size to a minimum.
· Monitoring Client (NGOP Monitor) – allows requesting and receiving of information about specified components, provides customizable service-level reporting, and initiates requests to perform action, provides a graphical representation of monitored hierarchy and the status of each component of the hierarchy, as well as means to display and acknowledge occurred events.
This document describes the NGOP configuration language that allows the creation of hierarchies of monitored components, describes rules to determine the status of components, and defines when and what kind of actions should be performed. The NGOP configuration language provides a framework for creating monitoring tools (“PlugIns”, “Swatch” Monitoring Agents). Detailed description of the NGOP subsystems and their features can be found in a separate document.

The NGOP configuration files are stored in a central repository. All the configuration files are written in XML.

2. Key Definitions

2.1 Host

A Host is a computer or an entity with assigned IP address identified by its name.

2.2 Cluster

A Cluster is a collection of Hosts that have a common usage purpose. Clusters could overlap. A Cluster could consist of one Host. A Cluster is uniquely identified by its name.

2.3 Monitored Element

A Monitored Element (ME) is an atomic entity that is monitored by NGOP. It has a well-defined behavior, is characterized by its State, Status and could be associated with some quantitative measurements. This entity could be derived from several parts; each of them could contribute to the overall State of the monitored element. A ME is located on a particular Host and belongs to a particular System. Each ME has a unique id that consists of the ME name, the Host name, the System name and the Cluster name. (Examples of Monitored Element: files system, tape drive, system daemon, and memory utilization.)

2.4 System

A System is a set of software components (ME) that can be logically integrated into one unit monitored by NGOP. A System is defined on a Cluster and may be distributed across multiple Hosts. It is characterized by its State and Status. A System has a unique id that consists of the System name and the Cluster name. (Examples of System: LSF Batch , OS “Health” System that could contain system daemons, critical file systems, etc.)

2.5 System View

A System View is a logical collection of Systems, Monitored Elements and System Views. A System View could be created by a user/administrator in order to create hierarchical structure in the NGOP Monitor. It is characterized by its Status.

2.6 Monitored Object

A Monitored Object could be a System or a ME monitored by NGOP.

2.7 State

A State is a characteristic of a Monitored Object defined by a Monitoring Agent, or the NCS. A Monitored Object could be in four different states:

Up - the Monitored Object is operational

Down - the Monitored Object is not operational
Undefined - NGOP was not able to determine the state of the monitored element. (Usually, set by the NCS when no information was available about this object since the start)
Unknown - NGOP failed to determine the current state of the monitored element but was able to do it earlier. (Usually, set by the NCS when connection with the MA is lost, and information about the Monitored Object becomes unavailable)

2.8 Severity Level

A Severity Level is a characteristic of an event defined by a MA. It could assume the integer values from 0 - “OK“ to 6 – “Bad”. It is used to describe events when the monitored object is still operational, but a change in the monitored object’s behavior or quantitative characteristics could indicate a potential problem. The severity level of the occurred event can be redefined by the status rule in the NGOP Monitor configuration.
2.9 Event

Events are generated by MAs and describe a detected condition. An Event includes the following fields:
· System name

· Cluster name

· Monitored Element name

· Host name

· Monitored Element type (the NGOP Monitor has different default icons associated with the different types of monitored element such as “daemon”, “sysUsage”, “usrUsage”, “hardware” etc. For example: “cpu load”, “memory”, and “swap” monitored elements have “sysUsage” type.)

· Date/Time
· Event Name (an aspect of the monitored element that contributed to event initiation).
· Event Value (the current measurement that is associated with an aspect of the monitored element).
· State

· Severity Level

· Source – the id of the Monitoring Agent (MA_name.host)

· Description (human readable explanation of the occurred event)

All event fields can be used in Rule or Condition within <apply> tag.

2.10 Status

A Status is a characteristic of a Monitored Object or System View defined by the NGOP Monitor based on the Status Rules and occurred events. A Status of a monitored object/system view could assume the following values: “Good”, “NotInService”, “Undefined”, “Unknown”, “Warning”, “Error”, “Bad”. Status defines the color of the icons that represents system views or monitored objects in GUI.

2.11 Status Rules

Status Rules are a set of rules defined by a user/administrator that are used by the NGOP Monitor to determine the Status of the Monitored Objects and System Views.

2.12 Action
Actions are associated with monitored objects. An event could trigger the NGOP application to send the request to the NCS to perform an action. NGOP generates zero or more actions depending on the event, NGOP configuration, current day/time, and requester’s authorization. Examples of Actions are:
–Display a message on the Operator console
–Send an e-mail message
–Send a message to a pager
–Run a script

3. XML Document and DTD

All NGOP configuration files are written in XML. XML stands for eXtensible Markup Language (see http://www.w3.org/XML for details). XML makes use of tags (words bracketed by '<' and '>') and attributes (of the form name="value"). XML uses the tags only to delimit pieces of data, and leaves the interpretation of the data completely to the application that reads it. All configuration files should conform to a corresponding DTD (Document Type Definition). A DTD is a set of rules for constructing of valid XML documents.

4. Common XML Constructs in NGOP Configuration

There are several XML constructs that are used in various NGOP configuration files.

They are listed in this chapter and the references to these constructions could be found throughout this document.

4.1 Expansion Mechanism (<For> tag)

The NGOP applications (such as NGOP Monitor, CFMS, PlugIns and Swatch Agent) use an expansion mechanism that allows the replication of a particular fragment of an XML document. This fragment refers to a particular hierarchy and will be repeated for every element of this hierarchy. The hierarchy should be defined in the same XML document or in some other XML documents with known names. The hierarchy consists of XML tags where each tag has at least one attribute: Name. There is just one outermost tag of hierarchy. This tag contains multiple tags that could be the same. This XML fragment should conform to the DTD rules.

Example:

This is a hierarchy of <Cluster> tags that contains <Host> tags in the CDFfarmCluster.xml file:

<Cluster Name=”CDFFarm”>

<Cluster Name=”CDFFarmIO”>

<Host Name=”cdffarm1”/>

</Cluster>

<Cluster Name=”CDFFarmWorker”>

<Host Name=”fncdf1”/>

…

<Host Name=”fncdf90”/>

</Cluster>

</Cluster>

The fragment of the XML document that needs to be replicated should be placed within <For> </For> tags. A <For> tag has the following attributes:

· Each (required) – refers to the child element within the hierarchy
· Var (required) – name of the variable that will be replaced every time when this name is encountered in the XML construction
Var=”{%PlaceHolder}”

· In (required) – refers to the parent element
· Name (required) – refers to the attribute Name of the parent element
· File (optional) – the name of the file where the hierarchy is described

Example:

• <For Each="Host" Var="{%Host}" In="Cluster" Name="CDFFarm” File=“CDFFarmCluster.xml “>
• <System Name="OSHealth“ Cluster= "{%Host}" >
•
 <MonitoredElement Name="ypbind" Host="{%Host}“ Type="Daemon“ />
• <MonitoredElement Name="syslogd" Host="{%Host}“ Type="Daemon“ />
 •

 •</System>
• •</For>
The highlighted fragment of the XML document will be repeated for every “Host” tag within the “Cluster” tag with attribute Name=”CDFFarm”. These tags are listed in the file CDFFarmCluster.xml. The values of the Cluster attribute of a <System> tag and the Host attribute of a <MonitoredElement> tag will be replaced with the corresponding value of the {%Host} variable. The resulting configuration will look like:

<System Cluster="cdffarm1" Name="OSHealth">

 <MonitoredElement Host="cdffarm1" Name="ypbind" Type="Daemon"/>

 <MonitoredElement Host="cdffarm1" Name="syslogd" Type="Daemon"/>

 </System>

<System Cluster="fncdf1" Name="OSHealth">

 <MonitoredElement Host="fncdf1" Name="ypbind" Type="Daemon"/>

 <MonitoredElement Host="fncdf1" Name="syslogd" Type="Daemon"/>

 </System>

….

<System Cluster="fncdf90" Name="OSHealth">

 <MonitoredElement Host="fncdf90" Name="ypbind" Type="Daemon"/>

 <MonitoredElement Host="fncdf90" Name="syslogd" Type="Daemon"/>

 </System>

4.2 Expression (<Apply> tag)

An <apply> tag is used in various places in the NGOP configuration (Rules, Service Type, and Condition definitions). It defines a mathematical expression (“logical brackets”) (see MathML for details). This expression is evaluated by the NGOP applications and if it is true some specific operations are carried out by the applications. For example, if at some point an expression, defined within a <Condition> tag in a PlugIns agent configuration file becomes true, an agent will generate an event; if expression within <GenericRule> tag becomes true, the NGOP Monitor will apply this rule to define the status of the monitored object associated with this rule.

An <apply> tag can contain other <apply> tags. It also could contain logical operators (<and>, <or>, <eq>, <neq>, <lt>, <leq>, <gt>, <geq>, <in>, <notin>.) or functions (<plus>, <times>,<minus>,<divide>,<sum>,<min>,<max>). An <apply> element includes “number” token element (<cn>) and identifier token element (<ci>). One of the operators or functions should be the first element within <apply> tag.

This XML fragment should conform to the DTD rules.

Example

Evaluate the following expression:

2y+ 4x + 1> 3z.

<apply>

 <gt/>

 <apply>

 <plus/>

 <apply>

 <times/>

 <ci>y</ci>

 <cn>2</cn>

 </apply>

 <!—2y--!>

 <apply>

 <times/>

 <cn>4</cn>

 <ci>x</ci>

 </apply>

 <!—4x--!>

 <cn>1</cn>

 </apply>

<!—2y+4x+1--!>

 <apply>

 <times/>

 <cn>3</cn>

 <ci>z</ci>

</apply>

<!—3z--!>

</apply>

<!--2y+4x+1>3z--!>

The <sum>,<min> and <max> tags should have the following construction:

<sum>

 <bvar>i</bvar>
• <lowlimit>
•
<cn>N1</cn>
• </lowlimit>
• <uplimit>
• <cn>N2</cn>
• </uplimit>

 <ci>element[i]</ci>

</sum>
This represents the following expression:

 (element[i])=element[N1]+….element[N2]

i=N1

Example:

<apply>

 <gt/>

 <apply>

 <sum>

<bvar>I</bvar>
 <lowlimit>
•
 <cn>0</cn>
• </lowlimit>
• <uplimit>
• <cn>10</cn>
• </uplimit>

 <ci>element[i]</ci>

 </sum>

 <apply/>

 <cn>20</cn>

</apply>
This defines the following expression:

 (element[i])>20

i=0

4.3 System (<System> tag)

A system definition is used in various places in the NGOP configuration (Swatch and PlugIns Agent configuration, NGOP Monitor hierarchy, status rules set and known status definition). A System is uniquely defined by two tuple:

System_Name,Cluster_Name

A <System> tag indicates the beginning of the system definition and requires two attributes:

· Name – defines the system name

· Cluster - defines the cluster name for this system
A <System> tag contains multiple <MonitoredElement> tags.

This XML fragment should conform to the DTD rules.

Example:

<System Name=”OSHealth” Cluster=”Fnalu”/>

This defines the system “OsHealth.Fnalu”

The <For> tag could be used to define multiple systems:

<Unix Name=”UnixFlavor”>

<Flavor Name=”Irix”/>

<Flavor Name=”Solaris”/>

<Flavor Name=”OSF1”/>

<Flavor Name=”Linux”/>

</Unix>

<For Each=”Flavor” Var=”{%F}” In=”Unix” Name=”UnixFlavor”>

<System Name=”OSHealth_{%F}” Cluster=”Fnalu”/>

</For>

this will be equivalent to the following XML fragment:

<System Name="OSHealth_Irix" Cluster="Fnalu" />

<System Name="OSHealth_Solaris" Cluster="Fnalu" />

<System Name="OSHealth_OSF1" Cluster="Fnalu" />

<System Name="OSHealth_Linix" Cluster="Fnalu" />
4.4 Monitored Element (<MonitoredElement> tag)

A monitored element definition is used in various places in the NGOP configuration (Swatch and PlugIns Agent configuration, NGOP Monitor hierarchy, status rules set and known status definition). A ME is uniquely defined by four tuple:

ME_Name,Host_Name,System_Name,Cluster_Name

A <MonitoredElement> tag could be encountered only within <System> tag. It has the following required attributes:

· Name – defines the monitored element name
· Host – defines the physical location of monitored element. (Instances of "localhost" in this value will be replaced by the local host name in MA.)

· Type – defines the type of monitored element (see Event for details)

This XML fragment should conform to the DTD rules.

Example:

<System Name=”OSHealth” Cluster=”Fnalu”>

<MonitoredElement Name=”cpuLoad” Host=”fnsfo” Type=”sysUsage”/>

</System>
This defines the monitored element with id=”cpuLoad.fnsfo.OSHealth.Fnalu” and type=”sysUsage” .

The <For> tag could be used to define multiple monitored elements:

<List Name=”Scratch”>

<Item Name=”1”/>

<Item Name=”2”/>

<Item Name=”3”/>

</List>

<System Name=”OsHelath_Irix” Cluster=”Fnalu”>

 <For Each=”Item” Var=”{%I}” In=”List” Name=”Scratch”>

<MonitoredElement Name=”/local/stage_{%I}” Host=”fnsfo” Type=”fileSystem”/>

 </For>

</System>

this will be equivalent to the following XML fragment:

<System Name="OSHealth_Irix" Cluster="Fnalu" >

 <MonitoredElement Name=”/local/stage_1” Host=”fnsfo” Type=”fileSystem”/>

 <MonitoredElement Name=”/local/stage_2” Host=”fnsfo” Type=”fileSystem”/>

 <MonitoredElement Name=”/local/stage_3” Host=”fnsfo” Type=”fileSystem”/>

</System>

4.5 Action (<Action> tag)

An <Action> tag is used in various places in the NGOP configuration (Rules, Condition definition). <Action> tags require two attributes: ID and execution Host. Several optional attributes could be provided as well:

· Method - perform a manual or automatic action (default method is automatic)

· Type - execute an action locally or send request to NCS (default type is local)

· Interval - time before attempt to repeat the same action in case of action failure or reoccurrence of the same event

· Repeat - how many times the same action could be repeated

An <Action> contains just one other tag <Exec> that describes actual executable and its arguments in two required attributes:

· Name

· Argument

 Special parameters could be included in an argument; these parameters always start with % sign. Every application has a list of parameters that could be used in configuration.

This XML fragment should conform to the DTD rules.

Example

<Action ID=”email” Host="ndem" Type="central" Method="automatic">

 <Exec Name="send_email" Argument="%Mail,Something_awful_ just_happened!" />

 </Action>

This defines the action with ID=”email” that should be started automatically on the host ”ndem”. The arguments that will be passed to the script “send_mail” will contain user e-mail address, and some description.

So far we have discussed the XML constructions that are common to the all NGOP subsystems, now we will concentrate on the specific XML constructions.

5. Monitoring Agent

A MA includes the following features:

· MA interfaces to NGOP Central Server

· MA performs the following tasks:

· Monitoring of the characteristics of a particular monitored object

· Sending events to the NCS if current characteristic of the object meets specific conditions (A MA doesn’t send any event when the monitored object doesn’t meet any condition. In this case the State of the monitored object is assumed to be UP. A MA will send an event if a monitored object stopped satisfied some condition)

· Performing actions

· Sending requests to perform some actions

· Sending heartbeats to the NCS

· Resending messages and configuration when the connection with the NCS is interrupted

· MA configuration, conditions and actions associated with conditions are described in the configuration file using XML. This file should be located on the node where MA is running

· MA is written in Python

NGOP provides a framework for creation of the MAs: either by using the MA API or the PlugIns Agent.
5.1 PlugIns Agent

A PlugIns Agent provides the monitoring of software or hardware components utilizing existing scripts or executables (plug-ins). These plug-ins should be able to measure some quantitative characteristics of the monitored objects. A configuration file describing the monitored hierarchy, plug-ins and set of conditions is required in order to use a PlugIns Agent. This configuration file should conform to specific DTD rules. A configuration file should start with the following XML declarations:

<?xml version=”1.0” ?>

<!DOCTYPE MA-Config SYSTEM "agent.dtd" >

The first tag of a PlugIns Agent XML document is a <MA_config> tag, which defines MA configuration and is required. It has two required attributes:

· Name – the name of this PlugIns Agent

· Update - specifies the time interval in seconds between running the plug-ins

A <NCS> tag (required) defines the NCS parameters and includes the following required attributes:

· Port -
the NCS UDP port

· Host -
the NCS host

· Heartbeat - specifies the heartbeat interval in seconds
A system description should follow the <NCS> tag. Several systems could be described in the same XML document. A <System> tag indicates the beginning of the system definition. It contains multiple monitored elements.

A <ConditionSet> tag indicates the beginning of the condition set definition. A <ConditionSet> tag could be placed within the <MonitoredElement> or <System> tags. It contains the description of a plug-in and at least one condition. The <fn> tag describes plug-in that should be executed in order to define the state of a monitored. It has the following required attributes:

· Name - the name of the operation (“plug_in” for all the PlugIns Agents)

· Arg – the full path to the plug-in that needs to be executed to verify the state of monitored object (Parameters %ID, %Name, %Cluster and %Host can be used in an attribute Arg and will be substituted with the corresponding values of monitored object)

· RetVal – the description of return values. It has the following format:

“type:var_name, type:var_name…”,

where types could be:

“float”, “int”, “string” or “array int”, ”array float”, “array string”

Important: in case of an “int”, “float” or “string” types the return values should be returned in standard output of a plug-in, and separated by “new line” characters; in case of an “array …” type the return values should be returned in standard output of a plug-in, and separated by space (see Example for more details). If the plug-in exited with non-zero exit code then the return value is set to “Error” and the following event will be generated:

“Date=… ID=… EventType=” executable” EventName=”plug-ins” State=-2 Description=”Failed to execute command”

The <Condition> tag indicates the beginning of the condition definition and has the following attributes:
· State (required) - defines the monitored object state if the occurred event satisfied this condition

· SevLevel (required) - severity level of the event that satisfied this condition

· Description (required) - readable description of the event(Parameters %ID, %Name, %Cluster ,%Host and %Event can be used in an attribute Description and will be substituted with the corresponding values of monitored object)

· EventName (optional) - defines the event name if it is different from the monitored object name (see Event)

· EventType (optional) - defines the event type if it is different from the monitored object type (see Event)

The <apply> tag indicates the beginning of a mathematical expression that should be evaluated in order to determine if the condition is satisfied. If an expression is evaluated to be true a PlugIns Agent will generate an event. A special variable “%len(retValue_array_name)” can be used in <ci> tag. It refers to the length of the array in plug-ins return value and can be used in <sum>, <min> and <max> function operators

(See Example for more details).
The <Action> tag is optional and it indicates the beginning of action definition. If the condition is satisfied and the action is defined, then the PlugIns Agent will perform this action locally or send request to the NCS to execute this action.

So, the general structure of a PlugIns Agent configuration file should look like:

<?xml version=”1.0” ?>

<!DOCTYPE MA-Config SYSTEM "agent.dtd" >

<MA-Config Name….>

 <NCS Host=…/>

 <System Name=..>

<MonitoredElement Name=…>

<ConditionSet>

 <fn Name=”plug-ins” Arg=…/>

<Condition State=…>

 <apply>

 <!—expression--!>

</apply>

<Action>

</Action>

 </Condition>

 <!—more conditions--!>

 </ConditionSet>

 </MonitoredElement>

 <!—more monitored elements--!>

 </System>

<!—more systems--!>

</MA-Config>

In the PlugIns Agent configuration “localhost” instances will be replaced by the local host name.

Example:

Let’s assume that we want to monitor ma the system load averages for the past 1, 5, and 15 minutes using “uptime command as a “plug-in”:

>>uptime|awk '{print $(NF-2),$(NF-1),$NF}'|awk -F',' '{print $1,$2,$3}'

0.84 0.84 0.75

We want that a PlugIns agent will generate event when minimum of cpu load averages exceeds 12.0. The fragment of the PlugIns configuration file looks like:

<MonitoredElement Name=”cpuLoad” Host=”localhost” Type=”sysUsage”>

 <ConditionSet>

 <fn Name="plug_ins" Arg=" uptime|awk '{print $(NF-2),$(NF-1),$NF}'|awk -F',' '{print $1,$2,$3}' " RetVal=”array float:load"/>

 <Condition State=”UP” SevLevel="6" Description="Cpu load too high">

 <apply>

 <geq/>

<apply>

 <min>

 <bvar>i<bvar>

 <lowlimit><cn>0<cn></lowlimit>

 <uperlimit><ci>%len(load)</ci></uperlimit>

 <ci>load</ci>

 </min>

</apply>

 <cn>12.0</cn>

 </apply>

 <!—checking for condition : min(load[i]) >=12.0 , where i = 0, len(load)--!>

 </Condition>

 </ConditionSet>

Let’s assume that we want to monitor OS “Health” on the SGI node (“fnsfo”). We want to check some components using the following Unix commands:

· Number of cpu off –line:

>>"mpadmin -n|wc -l"

· Cpu load during last 15 min:

>>uptime | awk -F',' '{print $NF}'

· /dev/root file system size

>>df /dev/root | grep -v Filesystem|awk '{print $6}'

· Inetd daemon presence

>> ps -ef | grep inetd | grep -v grep|wc –l

The agent’s configuration file will look like this:

<?xml version=”1.0”?>
<!DOCTYPE MA-conifg System “agent.dtd”>

<MA-config Name=”SGI_Health” Update=”180”>

 <NCS Heartbeat="600" Port="19997" Host="ndem.fnal.gov"/>

 <System Name=”OSHealth” Cluster=”localhost”>

 <!—system id is “OSHealth.fnsfo” --!>

 <MonitoredElement Name=”cpuStatus” Host=”localhost” Type=”Hardware”>

 <!—monitored element id is “cpuStatus.fnsfo.OSHealth.fnsfo” --!>

 <ConditionSet>

 <fn Name="plug_ins" Arg="mpadmin -n|wc -l" RetVal="int:onlinecount"/>

 <Condition State=”Down” SevLevel="6" Description="At least one cpu is off-line">

 <apply>

 <eq/>

 <ci>onlinecount</ci>

 <cn>4</cn>

 </apply>

 <!—checking for condition : (onlinecount == 4) , where number of processors on fnsfo is equal to 4--!>

 </Condition>

 </ConditionSet>

 </MonitoredElement>

 <MonitoredElement Name=”cpuLoad” Host=”localhost” Type=”sysUsage”>

 <!—monitored element id is “cpuLoad.fnsfo.OSHealth.fnsfo” --!>

 <ConditionSet>

 <fn Name="plug_ins" Arg=”uptime | awk -F',' '{print $NF}'" RetVal="float:load"/>

 <Condition State=”UP” SevLevel="4" Description="Cpu load is between 8 and 15 during last 15 minutes">

 <apply>

<and/>

 <apply>

 <geq/>

 <ci>load</ci>

 <cn>8.0</cn>

 </apply>

 <apply>

 <lt/>

 <ci>load</ci>

 <cn>15.0</cn>

 </apply>

 </apply>

 <!—checking for condition : ((load>=8)&& (load<15)) --!>

 </Condition>

 <Condition State=”UP” SevLevel="6" Description="Cpu load is greater than 15 during last 15 minutes">

 <apply>

 <geq/>

 <ci>load</ci>

 <cn>15.0</cn>

 </apply>

 <!—checking for condition : (load>=15) --!>

 </Condition>1

 </ConditionSet>

 </MonitoredElement>

 <MonitoredElement Name=”/dev/root” Host=”localhost” Type=”FileSystem”>

 <!—monitored element id is “/dev/root.fnsfo.OSHealth.fnsfo” --!>

 <ConditionSet>

 <fn Name="plug_ins" Arg=”df /dev/root | grep -v Filesystem|awk '{print $6}'" RetVal="int:size"/>

 <Condition State=”UP” SevLevel="6" Description="file system is more then 95% full">

 <apply>

 <gt/>

 <ci>size</ci>

 <cn>95</cn>

 </apply>

 <!—checking for condition : (size>95%) --!>

 </Condition>

 </ConditionSet>

 </MonitoredElement>

 <MonitoredElement Name=”inetd” Host=”localhost” Type=”Daemon”>

 <!—monitored element id is “inetd.fnsfo.OSHealth.fnsfo” --!>

 <ConditionSet>

 <fn Name="plug_ins" Arg=”ps -ef | grep inetd | grep -v grep|wc -l" RetVal="int:ifExist"/>

 <Condition State=”Down” SevLevel="6" Description="inetd daemons is not running">

 <apply>

 <neq/>

 <ci>ifExists</ci>

 <cn>1</cn>

 </apply>

 </Condition>

 </ConditionSet>

 </MonitoredElement>

</System>

</MA-config>

5.2 Swatch Agent

A Swatch Agent is an agent that watches a log file for lines matching a regular expression, and takes some action when this occurs (similar to swatch). Like the other agents in NGOP, an XML configuration file controls the Swatch Agent’s behavior. A XML document for each Swatch Agent is placed in a separate file and should begins with the following XML declarations:

<?xml version=”1.0”?>

 <!DOCTYPE SwatchAgentConfig SYSTEM "swatchagent.dtd" >

The outermost tag of the file is <SwatchAgentConfig> , which includes the following required attributes:

· name -
specifies the name of this MA.

The second outermost tag of the file is <NCS>, which includes the following attributes:

· Heartbeat - specifies the hearbeat interval in seconds

· Host - specifies the host name of the NCS to send events

· Port - specifies the port number on the above host

The third outermost tag of the file is <File>, which includes the following attributes:

· file - This lists the file the agent should watch for messages

· filetype -This can be either: “multihost” - indicating that a hostname match should be prepended to regular expressions when expanding HostType lists; “plain” -indicating that all regular expressions are to be used verbatim

A system description should follow the<File> tag. Several systems could be described in the same XML document. The <System> tag indicates the beginning of the system definition. It contains multiple monitored elements.

Once we are in the context of a given <MonitoredElement>, we can specify rules about log file lines, which will trigger events about that monitored element, with an <ReRule> tag. <ReRule> tag has the following required attributes:

· Regexp – defines regular expression

· State

· SevLevel
· EventName
· EventValue
and one optional attribute:

· ActionID – defines action that should be executed when pattern is matched

A <Action> tag that should be within a <SwatchAgentConfig> tag describes an action.

In the Swatch Agent configuration instances of "localhost" will be replaced by the local host name. This configuration file should conform to the DTD rules.

Example:

Let’s assume that we want to monitor syslogd log file on a Linux machine. We want to watch for the following patterns:

· 'kernel: nfs: server.*not responding'

· 'ypbind.*failed'

· 'shutdown succeeded'

· 'startup succeeded'

· 'kernel:.*irq

· 'kernel:.*reset: success'

· 'kernel:.*status timeout:’

· 'kernel:.*drive not ready for command'

<?xml version='1.0'?>

<!DOCTYPE SwatchAgentConfig SYSTEM "swatchagent.dtd" >

<SwatchAgentConfig name="SwatchAgent">

<NCS Heartbeat="600" Host='ndem.fnal.gov' Port='19997'>

<File file='/var/log/messages' filetype='plain'>

 <System ID='OSHealth' Cluster='localhost'>

 <MonitoredElement Name='syslogd' Type='Daemon' Host='localhost'>

 <ReRule Regexp='kernel: nfs: server.*not responding' EventName='nfs' State='UP' SevLevel='6'/>

 <ReRule Regexp='ypbind.*failed' EventName='ypbind' State='UP' SevLevel='4'/>

 <ReRule Regexp='shutdown succeeded' State='UP' SevLevel ='5'/>

 <ReRule Regexp='startup succeeded' State='UP' SevLevel= '0'/>

 <ReRule Regexp='kernel:.*irq timeout' State='UP' SevLevel= '6'/>

 <ReRule Regexp='kernel:.*reset: success' State='UP' SevLevel= '6'/>

 <ReRule Regexp='kernel:.*status timeout:' State='UP' SevLevel= '6'/>

 <ReRule Regexp='kernel:.*drive not ready for command' State='1' SevLevel= '6'/>

 <ReRule Regexp='kernel:.*Unable to load interpreter /lib/ld-linux.so.2' State='1' SevLevel= '6'/>

 </MonitoredElement>

 </System>

</File>

</SwatchAgentConfig>

6. NGOP Monitor

The NGOP Monitor is a graphical user interface for monitoring the hierarchy of the system views.
The NGOP Monitor has the following features:

· It interfaces the CFMS and the NCS

· It allows configuring custom-built system views, based on information obtained from the CFMS

· It requests and receives information about monitored objects from the NCS

· It determines the status of the system views and the monitored objects based on a pre-defined status rules and information obtained from the NCS

· It initiates requests to perform central actions

· It performs local actions

NGOP uses XML to describe the hierarchy and status rules, as well as information about “out of service” monitored objects, available service classes, existing hosts and clusters.

The description of the NGOP object hierarchy could be located in one or multiple configuration files. Each status rule set should be placed in a separate file.

After the NGOP product is installed on the user machine and all the environment variables are properly set (see Ngop Installation and Ngop Monitor startup instruction), the user can start monitoring by issuing the following command:

>>ngop monitor &

When the user invokes the NGOP Monitor for the first time, she/he will be prompted to select a desirable configuration. The selection request will be sent to the CFMS and the corresponding configuration files will be downloaded into a specific user area (see Ngop Installation and Ngop Monitor startup instruction). In the NGOP Monitor, system views and monitored objects are represented by the corresponding icons:

[image: image3.png][image: image4.png][image: image5.png]
The status of the system views and monitored objects is represented by the color of the icon:

[image: image6.png][image: image7.png]
In addition to the color of the icons, a set of colored arrows exists to indicate potential problems. There is a hierarchy of color (based on severity level of the occurred event) to represent the proximity to the possible problem:

6.1 Common Configuration Files

There are several configuration files that contain general information needed for the NGOP Monitor. These files include data about “out of service” monitored objects, available service classes, existing hosts and clusters.

These files will be downloaded into user configuration area regardless of which monitored objects are selected by the user. These can be considered the default configuration files.

6.1.1 File service_class.xml

The service_class.xml configuration file contains information about defined types of service. The service type could be associated with the hosts and monitored objects. By default, a monitored element, located on a host has the same service type as this host. A service type defines the time period of active monitoring. This file has the following required declarations and tags:

<?xml version='1.0'?>

<!DOCTYPE NGOPConfig SYSTEM "service_class.dtd">

<NGOPConfig>

<Default_File/>

<ServiceClass>

……… - definition of service type should be placed here

 </ServiceClass>

</NGOPConfig>

A <ServiceClass> tag contains definition of the several service types (tag <ServiceType> , such as “9x5” or “24x7”(“9x5” means that a particular monitored object/host will be actively monitored from 8 am to 5 pm on weekdays). The default service type is “24x7”. A service type is described by a mathematical expression by using an <apply> tag. If the expression is evaluated to be false, all events occurred with the corresponding monitored object/host will be ignored. Within an <apply> tag, a <ci> tag could assume only two values: “hour” or “day_of_the_week”. “Days of the week” are represented by an array of integers, where 0 corresponds Monday. “Hour” is represented by an integer value within 0 – 24 range. This configuration file should conform the to DTD rules.

Example:

 <ServiceType name="9x5">

 <apply>

 <and/>

 <apply>

 <geq/>

 <ci>hour</ci>

 <cn>8</cn>

 </apply>

 <!—(hour>=8)--!>

 <apply>

 <leq/>

 <ci>hour</ci>

 <cn>17</cn>

 </apply>

 <!—(hour<=17)--!>

 <apply>

 <notin/>

 <ci>day_of_the_week</ci>

 <cn>[5,6]</cn>

 </apply>

 <!—(day_of_the_week not in [Saturday,Sunday])--!>

 </apply>

 <!—this just means that “9x5” service type is defined between 8:00-17:00 every day except Saturday and Sunday--!>

 <!—see apply for details--!>

</ServiceType>

6.1.2 File hosts_in_clusters.xml

The hosts_in_clusters.xml configuration file contains clusters and hosts that exist in the system. The service type of each host is defined in this configuration. If a service type is not defined, the default service type is assumed for a host. This file has the following required declaration and tags:

<?xml version='1.0'?>

<!DOCTYPE NGOPConfig SYSTEM "hosts_in_clusters.dtd">

<NGOPConfig>

<Default_File/>

<HostsInClusters>

……… - known status definition should be placed here

 </HostsInClusters>

</NGOPConfig>

A <HostsInClusters> tag contains multiple <Cluster> tags. A <Cluster> tag has one required attribute:

· Name

A <Cluster> tag contains other <Cluster> or <Host> tags. A <Host> tag has one required attribute:

· Name

A <ServiceType> tag could be placed anywhere within a <HostsInClusters> tag. It is defined the service type for all clusters and hosts it contains. A <ServiceType> tag has one required attribute:

· Name – the value of this attribute is the name of the service type defined in the service_class.xml configuration file.

This configuration file should conform to the DTD rules.

Example:

<ServiceType Name="24x7">

 <Cluster Name="FNALU_BATCH">

 <Cluster Name=" FNALU_BATCH_OSF1">

 <Host Name="fdei01"/>

 </Cluster>

 <Cluster Name=" FNALU_BATCH_IRIX">

 <Host Name="fsgb02"/>

 <Host Name="fsgb03"/>

 <Host Name="fsgi02"/>

 <Host Name="fsgi03"/>

 </Cluster>

 <Cluster Name=" FNALU_BATCH_Solaris">

 <Host Name="fsub01"/>

 <Host Name="fsui02"/>

 <Host Name="fsui03"/>

 </Cluster>

 </Cluster>

</ServiceType>

The following describes the cluster “FNALU_BATCH”. It has three sub clusters:

· “FNALU_BATCH_IRIX” with hosts:
· –fsgb02
· –fsgb03
· –fsgi02
· –fsgi03
· “FNALU_BATCH_OSF1” with host:
· –fdei01
· “FNALU_BATCH_Solaris” with hosts:
· –fsub01
· –fsui02
· –fsui03
All hosts that belong to the “FNALU_BATCH” cluster require 24x7 maintenance support.

6.1.3 File known_status.xml

The known_status.xml configuration file contains references to the monitored objects or hosts that are known to be out of service for a significant period of time. A monitored object/host could be marked as “bad”, “in repair” or “test”. If a monitored object/host is not listed in this file, its status is “working”. This file has the following required declaration and tags:

<?xml version='1.0'?>

<!DOCTYPE NGOPConfig SYSTEM "known_status.dtd">

<NGOPConfig>

<Default_File/>

<KnownStatus>

……… - known status definition should be placed here

 </KnownStatus>

</NGOPConfig>

A <KnownStatus> tag contains multiple <Status> tags. A <Status> tag has one required attribute:

· Name – that could assume the following values: “bad”,”in_repair” or “test”

You can specify the “out of service” time interval (<OutOfServiceInterval> tag) within the <Status> tag. It includes the following required attributes:

· StartDateTime – “yyyy-mm-dd hh:mm”

· EndDateTime – “yyyy-mm-dd hh:mm”

If an object/host needs to be marked “out of service” for periodic maintenance, it can be specified using a <MaintenancePeriod> tag. This tag has three required attributes:

· DaysInterval – the maintenance reoccurrence interval in days (the count starts from the day defined in <StartDate>)

· FromTime – the maintenance start time (hh:mm)

· HoursDuration - maintenance duration in hours

Out of service monitored objects and hosts could be listed within the corresponding <Status> tag. This configuration file should conform the DTD rules.

Examples:

<Status Name="bad">

 <Host Name="fnpc110"/>

 <System Name=”LSF” Cluster=”fsgb02” />

</Status>
This declares host “fnpc110” and system “LSF.fsgb02” to be in a known bad condition.

<Status Name="in_repair">

 <OutOfServiceInterval StartDateTime=”2001-05-01 12:30”>

 <System Name=”OCS” Cluster=”FixTarget”/>

 </OutOfServiceInterval>

</Status>

<Status Name="test">

 <OutOfServiceInterval StartDateTime=”2001-05-04 08:30”>

 <MaintenancePeriod DaysInterval=”7” FromTime=”08:30” HoursDuration=”4”>

 <Host Name="fnpc107"/>

 </ MaintenancePeriod>

 </OutOfServiceInterval>

</Status>
This declares the system “OCS.FixTarget” to be in repair since May 1, 2001 12:30 and host “fnpc107” being used for testing purpose weekly from 8 am to 12 pm since May 4, 2001

6.2 NGOP Hierarchy Definition

An NGOP monitored hierarchy consists of system views, systems and monitored elements. The system and system view definitions could be placed in one or multiple configuration files. The monitored element definitions should be always placed within the system definition. Every configuration file describing the NGOP monitored hierarchy has the following required declaration and tags:
<?xml version='1.0'?>

<!DOCTYPE NGOPConfig SYSTEM "hierarchy.dtd">

<NGOPConfig>

……… - definition of system view, system, and monitored elements should be placed here

</NGOPConfig>

The following XML tags are used to describe the monitored hierarchy:

· <SystemView>

· <System>

· <MonitoredElement>

A <For> tag can be used anywhere in the monitored hierarchy definition in order to replicate some XML fragments.

6.2.1 System View

A System View is uniquely defined by its id. A system view contains only references to the other system views and monitored objects. (Important: all components of the hierarchy should be defined elsewhere!)

A <SystemView> tag has the following attributes:

· ID (required)

· RefRule - a reference to the status rules set, describing the status rules for this system view, the default value is “SystemViewDefRuleSet”
This configuration file should conform the DTD rules.

Example:

<SytemView ID=”LSF_Fnalu_Batch”>

 <SystemView ID=”Fnalu_Batch_Irix”/>

 <SystemView ID=”Fnalu_Batch_Solaris”>

 <!—references to the system views---!>

 <System Name=Ping Cluster=”Fnalu_Batch”/>

 <!—reference to the system--!>

 <System Name=”OSHealth” Cluster=”Fnalu_Batch”>

<MonitoredElement Name=”/tmp” Host= Host=”fsgb02”/>

<MonitoredElement Name=”/tmp” Host=”fsgb03” />

….

 </System>

 <!—references to monitored elements--!>

</SystemView>

This defined the system view “LSF_Fnalu_Batch” that contains two other system views: “Fnalu_Batch_Solaris” and “Fnalu_Batch_Irix”; one system “Ping.Fnalu_Batch”; several monitored elements: “/tmp.fsgb02.OSHealth.Fnalu_Batch”,…

 <SystemView ID=”Fnalu_Batch_Irix”>

 <System Name=”LSF” Cluster=”fsgb02”/>

 <System Name=”LSF” Cluster=”fsgb03”/>

 <System Name=”LSF” Cluster=”fsgi02”/>

 </SystemView>

This defined the system view “Fnalu_Batch_Irix” that contains three “LSF” systems running on fsgb02, fsbg03 and fsgi02.

6.2.2 System

A <System> tag contains multiple <MonitoredElement> tags and should be referenced at least once within <SystemView> tag. A definition of a system hierarchy should be placed outside system view scope. In the NGOP hierarchy definition a <System> tag has two additional optional attributes:

· ServiceType – default “24x7”

· RefRule - a reference to the status rules set, describing the status rules for this system, the default value is “SystemDefRuleSet”

This configuration file should conform the DTD rules.

Example:
<System Name=”Ping” Cluster=”Fnalu_Batch”/>

This shows the reference to the “OsHealth.Fnalu” system

<System Name=”Ping” Cluster=”Fnalu_Batch” ServiceType=”24x7” RefRule=”SGIHealthRuleSet”>

<MonitoredElement Name=”ping” Host=”fsgb02” Type=”Hardware”/>

<MonitoredElement Name=”ping” Host=”fsgb03” Type=”Hardware”/>

<MonitoredElement Name=”ping” Host=”fsub02” Type=”Hardware”/>

</System>

This defines the system with id=”OSHealth.Fnalu” that should be monitored around the clock. The status rule set defining the status of this system is described in “SGIHealthRuleSet”. The system consists of several monitored elements: “ping.fsgb02.Ping.Fnalu_batch”

6.2.3 Monitored Element

A <MonitoredElement> tag could be encountered only within <System> tags and has two additional optional attributes:

· ServiceType – default is service type of the host

· RefRule – a reference to the status rule set, describing the status rules for this monitored element, the default value is “MEDefRuleSet”
This configuration file should conform the DTD rules.
Example:

<System Name=”OSHealth” Cluster=”Fnalu”>

<MonitoredElement Name=”cpuLoad” Host=”fnsfo” Type=”sysUsage”/>

</System>
This defines the monitored element with id=”cpuLoad.fnsfo.OSHealth.Fnalu” and type=”sysUsage” . The status rule set defining the status of this monitored element is described in “MEDefRuleSet” and the service type is the service type of the host “fnsfo”.

7. Status Rule Set

Every set of status rules is associated with some systems view or monitored objects. When the NGOP Monitor receives an event regarding an object, it uses set of status rules associated with this object to define its status and severity level. It also applies the corresponding rules to every component of the hierarchy this object belongs. In the NGOP configuration, a <StatusRuleSet> tag with required attribute ID represents the set of status rules. Every set of status rules definition is located in a separate file and has the following required declaration and tags:
<?xml version='1.0'?>

<!DOCTYPE NGOPRules SYSTEM “rules.dtd">

<NGOPRules>

<StatusRuleSet ID=”MEDefRuleSet>

……depenent list could be placed here

…… rules

</StatusRuleSet>

</NGOPRules>

The content of the set of status rules definition could be divided into two parts:

· Dependent list - list of all objects that this particular monitored object depends on

· Rules

A Dependent list can be omitted if a monitored object doesn’t depend on any other object.

7.1 Dependent List

A dependent list contains a list of the references to monitored objects and system views. In the NGOP configuration, a <DependentList> tag represents a dependent list. In a dependent list monitored objects/system views are arranged in groups. A group contains other groups and is represented by a <Group> tag that has one required attribute Name (it should be unique only within this <SatusRulesSet> definition). Every group has a parameter “%GroupLen” that is equal to the total number of the monitored objects in the group. A system could contain one special empty group with the attribute Name set to “%self”. It means that this system depends on all monitored elements that it contains. All objects in a dependent list are ordered by their appearance relative to a particular group. A <For> tag can be used in a dependent list. This XML fragment should conform the DTD rules.

Example:

This is an example of dependent list that consist of “self” group:

<DependentList>

 <Group Name=”%self”/>

</DependentList>

The FBS system depends on the “bmgr” and “logd” processes running on its central node and the group of launcher processes running on worker nodes. It also depends on the central node being up (we don’t want to have any events regarding FBS being down if the central node is down). FBS systems are running on cluster CDFFarm and D0Farm (these clusters are defined in the HostsInClusters.xml file).

HostsInClusters.xml

<?xml version='1.0'?>

<!DOCTYPE NGOPConfig SYSTEM "hosts_in_clusters.dtd">

<NGOPConfig>

<Default_File/>

<HostsInClusters>

<Cluster Name=”CDFFarm”>

 <Cluster Name=”CDFFarmIO”>

 <Host Name=”cdffarm1”/>

 </Cluster>

 <Cluster Name=”CDFFarmWorker”>

 <Host Name=”fncdf1”/>

 ….

 <Host Name=”fncdf90”/>

 </Cluster>

</Cluster>

<Cluster Name=”D0Farm”>

 <Cluster Name=”D0FarmIO”>

 <Host Name=”d0bbin”/>

 </Cluster>

 <Cluster Name=”D0FarmWorker”>

 <Host Name=”fnd01”/>

 ….

 <Host Name=”fnd100”/>

 </Cluster>

</Cluster>

….

 </HostsInClusters>

</NGOPConfig>

<?xml version='1.0'?>

<!DOCTYPE NGOPRules SYSTEM "statusruleset.dtd">

<NGOPRules>

<FBSInstance Name=”FBS”>

 <Instance Name=”D0”/>

 <Instance Name=”CDFFarm”/>

</FBSInstance>

<For Each=”Instance” Var=”{%I}” In=”FBSInstance” Name=”FBS”>

<StatusRuleSet ID=”FBS{%I}RuleSet>

 <DependentList>

 <Group Name=”fbs_daemon/>

 <System ID=”FBS” Cluster=”{%I}Farm” >

 <For Each=”Host” Var=”{%H}” In=”Cluster” Name=”{%I}FarmIO”

<MonitoredElement Name=”bmgr” Host=”{%H}” />

<MonitoredElement Name=”logd” Host=”{%H}” />

 </For>

 </System>

 </Group>

 <!—logd could be referenced in DependRule as fbs_daemon[1]--!>

 <Group Name=”launcher”>

 <System ID=”FBS” Cluster=”{%I}Farm” >

 <For Each=”Host” Var=”{%H}” In=”Cluster” Name=”{%I}FarmWorker”>

<MonitoredElement Name=”launcher Host=”{%H}”/>

 </For>

 </System>

 </Group>

<!—launcher on fncdf1 could be referenced in DependRule as launcher[0]--!>

<Group Name=”hostUP”/>

 <System Name=”Ping” Cluster=”{%I}FarmIO”>

 <For Each=”Host” Var=”{%H}” In=”Cluster” Name=”{%I}FarmIO”>

 <MonitoredElement Name=”ping” Host=”{%H}”/>

 </For>

 </System>

 </Group>

</DependentList>

…

</StatusRuleSet>

</NGOPRules>

7.2 Rule

When the NGOP Monitor receives an event it performs the following steps:

1. Finds the monitored object associated with this event

2. Finds the status rule set that defined rules for this monitored object

3. Evaluates an expression defined in every rule

4. Applies the rule (sets status and severity level) if an evaluated expression is true. The worst status/severity level of the corresponding rule with the highest priority will determine ultimate object’s status/severity level.

5. Identifies all the members of hierarchy that could be affected by the change of this monitored object status.

6. Repeats steps 2-6 until there is no more affected members of hierarchy (step 5)

There are two implemented rule types. A Generic Rule (<GenericRule> tag) sets the monitored object status and severity level based on the event received from the NCS. A Dependent Rule (<DependentRule> tag) sets the monitored element status and severity level based on the event received from the NCS and the status of each dependent monitored object in some group. All these rules have three required attributes Status, Priority, Severity Level and one optional attribute Description.

Every rule contains an expression that has to be evaluated upon receipt of an event. In an expression any particular field of the event can be referred by its name. An Action could be attached to any of the rules.

Status

In rule definition status could assume a special value “None” that indicates that this rule will not change existing status. In a Dependent Rule the Status of dependent list members could be used in expression.
 Severity Level

In rule definition severity level could assume a special value “None” that indicates that this rule will not change existing severity level.

 Priority

A priority indicates the importance of the particular rule. It can assume any integer values starting from 0 where “0” priority corresponds to the least important rule. If the several rules were satisfied, then the status and severity level of the monitored object would be the ones associated with the rule with the highest priority.

 Description

Description is a readable explanation of a rule’s condition. Special parameters could be included in a description such as %ID , %Host or %Event. These parameters will be replaced by the corresponding values of the monitored object associated with this rule.

Example:

Let’s assume that the agent “LinuxHealth” is monitoring the file system “/export/home” on the worker node “fnd01”. This file system should be mounted from the i/o node “d0bbin”. The LinuxHelath Agent can generate events in three cases:

1. The file system is not mounted

2. Automount program is not running

3. The file system is more than 95% full

The status of the monitored element should change upon receiving any of these events unless the i/o node is down.

In order to do so the set of status rules (“FileSystemRuleSet”) should include the following rules:

	Rule Type
	Status
	Priority
	Evaluated Expression

	Dependent
	Good
	1
	d0bbin is down

	Generic
	Bad
	0
	File system is not mounted

	Generic
	Error
	0
	Automount is not running

	Generic
	Warning
	0
	File system is 95% full

So, if at some point we receive the event (1.), the status becomes “Bad” if i/o node is up and “Good” if i/o node is down.

7.2.1 Generic Rule Example

This rule is applied to a particular monitored object if the event associated with this object has “State” of 1 (“Up”). The severity level remains unchanged. This XML fragment should conform the DTD rules.

<GenericRule Status="Good" Prio="0" SevLevel="None" >

 <apply>

 <eq/>

 <ci>State</ci>

 <cn>1</cn>

 </apply>

<!—if expression (State==1) is true , rule is applied--!>

</GenericRule>

This rule is applied to a particular monitored object if the event associated with this object has “State” value equal to 0 (“Down”). The severity level remains unchanged.

<GenericRule Status="BAD" Prio="0" SevLevel="None" >

 <apply>

 <eq/>

 <ci>State</ci>

 <cn>0</cn>

 </apply>

<!—if expression (State==0) is true then rule is applied--!>

 </GenericRule>

This rule is applied to a particular monitored object if the event associated with this object has “State” value equal to 1 (“Up”) and “SevLevel” value equal to 6 (“Bad”). It set status to “Error”.

<GenericRule Status="Error" Prio="0" SevLevel="None" >

 <apply>

<and/>

 <apply>

 <eq/>

 <ci>State</ci>

 <cn>1</cn>

 </apply>

 <apply>

 <eq/>

 <ci>SevLevel</ci>

 <cn>6</cn>

 </apply>

 </apply>

<!—if expression ((State==1) && (SevLevel==6)) is true , rule is applied--!>

 </GenericRule>

7.2.2 Dependent Rule

A Dependent Rule allows using objects from a dependent list in an expression. These objects are indexed by their position within a specific group of a dependent list. For example, the object that is listed third in the group named “fbs_daemon” could be referred as “fbs_deamon[2]” (indexing starts with 0) in an expression. If a dependent list of a system status rule set has a group with Name=”%self”, the i-th monitored object that belongs to this system could be referred as “%self[i-1]”. This XML fragment should conform the DTD rules.

Example

This rule is applied to the “FBS” system when NGOP reports that “bmgr” daemon is not running. “bmgr” is a first element (fbs_daemon[0]) in “fbs_daemon” group in the dependent list of the “FBS” rule (see dependent list Example)

<DependRule Status="Bad" Prio="1" SevLevel=”None” Dsc=”Batch_Manager_is_down”>

 <apply>

 <and/>

 <apply>

 <eq/>

 <ci>fbs_daemon[0].EventType</ci>

 <cn>"Daemon"</cn>

 </apply>

 </apply>

 <eq/>

 <ci>fbs_daemon[0].State</ci>

 <cn>0</cn>

 </apply>

 </apply>

<!—if expression ((bmgr.EventType==”Daemon”) && (bmgr.State==0)) is true then rule is applied--!>

</DependentRule>

This rule is applied to the “FBS” system when NGOP reports that “FBS” central machine is down. “ping” is a first element (hostUp[0]) in “hostUp” group in the dependent list of the “FBS” rule (see dependent list Example).

<DependRule Status="Unknown" Prio="1" Dsc=”%Host_is_down”>

 <apply>

 <eq/>

 <ci>hostUp[0].State</ci>

 <cn>0</cn>

 </apply>

</DependentRule>

8. Action Client

An Action Client has the following features:

· It interfaces the NCS and the CFMS

· It gets configuration information from the CFMS

· It gets action requests from the NCS

· It verifies user authorization to request the actions

· It performs actions

· It notifies the NCS about success/failure of a performed actions

After the NGOP product is installed on the machine and all the environment variables are properly set (see Ngop Installation and Ngop Monitor startup instruction), an administrator could start NGOP Action Client by issuing the following command:

>>ngop action_client &

There are several configuration files that contain general information needed for the action clients. These files will be downloaded into a designated configuration area during the NGOP action client startup.

8.1 File authorized.xml

The authorized.xml configuration file contains information about the users who are authorized to perform certain actions via an action client. Each user belongs to an authorization group.

 If a user has requested an action but he/she is not listed in the authorized.xml configuration file the request will be denied. The authorized.xml file requires the following declaration and tags:
<?xml version='1.0'?>

<!DOCTYPE NGOPAction SYSTEM “action.dtd">

<NGOPAction>

<Authorization_File>

… authorized group are listed here

</Authorization_File>

</NGOPAction>

An <Authorization_File> tag contains zero or more < AuthorizedGroup> tags. This tag has a required attribute ID and contains zero or more user names (<User>). This configuration file should conform the DTD rules.

Example:

Two groups (“ngop_admin” and “oss_admin”) are described in this example.

A list of authorized users is attached to each group.

 <AuthorizationFile>

 <AuthorizedGroup ID="ngop_admin">

 <User Name="genser"/>

 <User Name="fromm"/>

 <User Name="mengel"/>

 <User Name="tlevshin"/>

 </AuthorizedGroup>

 <AuthorizedGroup ID="oss_admin">

 <User Name="shepelak"/>

 <User Name="timm"/>

 <User Name="dawson"/>

 <User Name="rayp"/>

 <User Name="merina"/>

 </AuthorizedGroup>

 </AuthorizationFile>

8.2 File action.xml

The action.xml configuration file describes actions, which consist of executables or scripts, a host where they are located and the groups that are authorized to perform this action. The action.xml file requires the following declaration and tags:
<?xml version='1.0'?>

<!DOCTYPE NGOPAction SYSTEM “action.dtd">

<NGOPAction>

<Action_File>

… actions are listed here

</Action_File>

<NGOPAction>

An <Action> tag has one required attribute ID and contains several <Host> tags. A <Host> tag has a Name attribute and contains one or more <AuthorizedGroup> tags (with ID attribute) and <Exec> tags (with Path attribute). This configuration file should conform the DTD rules.

Example:

Two actions are defined in this example. The first action allows “operator” and “oss_admin” groups to send email via action client running on “ndem” host. The second action allows the “oss_admin” group to restart daemons on any of the CDFFarm worker nodes.

<ActionFile>

 <Action ID="email">

 <Host Name="ndem">

 <AuthorizedGroup ID=”operator”/>

 <AuthorizedGroup ID=”oss_admin”/>

 <Exec Path=”scripts/email” >

 </Host>

 </Action>

 <Action ID=”restart_daemon”>

 <Cluster Name=”CDFFarmWorker” ExpType=”ForEachHost”>

 <AuthorizedGroup ID=”oss_admin”>

 <Exec Path=”scripts/restart_daemon”/>

 </Cluster>

 </Action>

</ActionFile>

Appendix A

For DTD

<!ELEMENT For (CDATA)*>

<!ATTLIST For

 Each CDATA#REQUIRED

Var CDATA#REQUIRED

In CDATA#REQUIRED

Name CDATA#REQUIRED

File CDATA#IMPLIED

>
Apply DTD

<!ELEMENT apply ((sum|,min|max|divide| times|plus|and|or|eq|neq|gt|geq|lt|leq|in|notin),(apply | cn | ci)*) >

<!ELEMENT sum (bvar, uplimit, lowlimit , (apply|ci|cn)*) >

<!ELEMENT min (bvar, uplimit, lowlimit , (apply|ci|cn)*) >

<!ELEMENT max (bvar, uplimit, lowlimit , (apply|ci|cn)*) >

<!ELEMENT bvar EMPTY >

<!ELEMENT uplimit (apply|cn) >

<!ELEMENT lowlimit (apply|cn)* >

<!ELEMENT times EMPTY >

<!ELEMENT plus EMPTY >

<!ELEMENT and EMPTY >

<!ELEMENT or EMPTY >

<!ELEMENT eq EMPTY >

<!ELEMENT neq CDATA>

<!ELEMENT gt EMPTY >

<!ELEMENT geq EMPTY >

<!ELEMENT leq CDATA>

<!ELEMENT lt EMPTY >

<!ELEMENT eq EMPTY >

<!ELEMENT in CDATA>

<!ELEMENT notin EMPTY >

<!ELEMENT ci CDATA>

<!ELEMENT cn CDATA >

Action DTD

<!ELEMENT Action (Exec) >

<!ATTLIST Action

 ID CDATA #REQUIERED

 Host CDATA #REQUIERED

 Method (manual|automatic) “automatic”

 Type (local|central) “central”

 Repeat CDATA#IMPLIED

 Gap CDATA #IMPLIED

>

<!ELEMENT Exec EMPTY >

<!ATTLIST Exec

Name CDATA #REQUIRED

Argument CDATA #REQUIRED

>

PlugIns Agent DTD

<!ELEMENT MA-config (NCS , For*,System*) >

<!ATTLIST MA-config

 Name CDATA #REQUIRED

 Update CDATA #REUIQRED

 >

<!ELEMENT NCS EMPTY >

<!ATTLIST NCS

 Heartbeat CDATA # REUIQRED

 Host CDATA # REUIQRED

 Port CDATA # REUIQRED

>

<!ELEMENT System (ConditionSet,For*, MonitoredElement*) >

<!ATTLIST System

 Name CDATA #REQUIRED

 Cluster CDATA #REQUIRED (localhost)

>

<!ELEMENT MonitoredElement (ConditionSet)* >

<!ATTLIST MonitoredElement

 Name CDATA #REQUIRED

 Type CDATA #REQUIRED (Element)

 Host CDATA #REQUIRED (localhost)

>

<!ELEMENT ConditionSet (fn ,Condition*) >

<!ELEMENT fn EMPTY >

<!ATTLIST fn

 Name “plug-in”#REQUIRED (plug-in)

 Arg CDATA #REQUIRED

 RetVal CDATA #REQUIRED

>

<!ELEMENT Condition (apply*,Action) >

<!ATTLIST Condition

 Description CDATA # REQUIRED

 SevLevel CDATA # REQUIRED

 State CDATA # REQUIRED

 EventType CDATA #IMPLIED

 EventName CDATA #IMPLIED

 >

<!—see for dtd --!>

<!--see apply dtd --!>

<!—see action dtd --!>

Swatch Agent DTD

<!ELEMENT SwatchAgentConfig (File)* >

<!ATTLIST SwatchAgentConfig

 name CDATA # REQUIRED

>

<!ELEMENT NCS EMPTY>

<!ATTLIST NCS

 Port CDATA # REQUIRED

 Host CDATA # REQUIRED

 Heartbeat CDATA # REQUIRED

 >

<!ELEMENT File (For*,System *,Action *) >

<!ATTLIST File

 file CDATA # REQUIRED

 filetype (plain|multihost)# REQUIRED

>

<!ATTLIST System

 Name CDATA #REQUIRED

 Cluster CDATA #REQUIRED

>

<!ELEMENT System (For*,MonitoredElement*) >

<!ELEMENT MonitoredElement (ReRule)* >

<!ATTLIST MonitoredElement

 Name CDATA # REQUIRED

 Type CDATA # REQUIRED

 Host CDATA # REQUIRED

>

<!ELEMENT ReRule EMPTY >

<!ATTLIST ReRule

 Regexp CDATA # REQUIRED

 SevLevel CDATA # REQUIRED

 State CDATA # REQUIRED

 EventType CDATA #IMPLIED

 EventName CDATA #IMPLIED

 EventValue CDATA #IMPLIED

 ActionID CDATA #IMPLIED

>

<!—see for dtd --!>

<!--see apply dtd --!>

<!—see action dtd --!>

Service Class DTD

<!ELEMENT NGOPConfig (Default_File ,ServiceClass) >

<!ELEMENT Default_File EMPTY >

<!ELEMENT ServiceClass (ServiceType)* >

<!ELEMENT ServiceType (apply)* >

<!ATTLIST ServiceType

Name CDATA #REQUIRED

>

<!—see apply dtd --!>

Hosts In Clusters DTD

<!ELEMENT NGOPConfig (Default_File, HostByCluster) >

<!ELEMENT Default_File EMPTY >

<!ELEMENT HostByCluster (ServiceType | Cluster)* >

<!ELEMENT ServiceType (Cluster|Host)* >

<!ATTLIST ServiceType

Name CDATA #REQUIRED

>

<!ELEMENT Cluster (Host)*>

<!ATTLIST Cluster

Name CDATA #REQUIRED

>

<!ELEMENT Host EMPTY>

<!ATTLIST Cluster

Name CDATA #REQUIRED

>
Known Status DTD

<!ELEMENT NGOPConfig (Default_File, KnownStatus) >

<!ELEMENT Default_File EMPTY >

<!ELEMENT KnownStatus (Status)* >

<!ELEMENT Status (OutOfServiceInterval|System|Host)* >

<!ATTLIST Status

Name (bad|test|in_repair) #REQUIRED

 >

<!ELEMENT OutOfServiceInterval (MaintenancePeriod)* >

<!ATTLIST OutOfServiceInterval

StartDateTime (CDATA,None) “None”

EndDateTime (CDATA,None) “None”

>

<!ATTLIST MaintenancePeriod>

DaysInterval CDATA #REQUIRED

FromTime CDATA #REQUIRED

HoursDuration CDATA#REQUIRED

>

Monitored Hierarchy DTD

<!ELEMENT NGOPConfig (For* ,SystemView*) >

<!ELEMENT SystemView (For*, (SystemView|System)* >

<!ATTLIST SystemView

ID CDATA #REQUIRED

RefRule (CDATA|SystemViewDefRuleSet) “SystemViewDefRuleSet”

>
<!ELEMENT System (For*,MonitoredElement *) >

<!ATTLIST System

Name CDATA #REQUIRED

ServiceType (CDATA,9x5,24x7) “24x7”

<!—new type should be first introduced in ServiceClass definition before it could be used here--!>

 RefRule (CDATA|SystemDefRuleSet) “SystemDeftRuleSet”

>
<!ELEMENT MonitoredElement EMPTY >

<!ATTLIST MonitoredElement

Name CDATA #REQUIRED

Type CDATA #REQUIRED

 RefRule (CDATA, MEDeftRuleSet) “MEDefRuleSet”

ServiceType (CDATA,9x5,24x7) “24x7”

>

<!—see for dtd --!>
Status Rule Set DTD

<!ELEMENT NGOPRule (StatusRulesSet)* >

<!ELEMENT StatusRulesSet (DependList?, (GenricRule | DependRule)*) >

<!ATTLIST StatusRulesSet

ID CDATA #REQUIRED

>

<!ELEMENT DependList (Group)* >

<!ELEMENT Group (For*,System*)>

<!ATTLIST Name

Name CDATA #REQUIRED

>

<!—see system dtd in hierarchy--!>

<!ELEMENT GenericRule (apply,Action) >

<!ATTLIST GenericRule

 Prio CDATA #REQUIRED

 Status (None|Good|Unknown|Undefined|Warning|Error|Bad) #REQUIRED

 SevLevel (None|Good|Unknown|Undefined|Warning|Error|Bad) (Good)

 Dsc CDATA #IMPLIED

>

<!ELEMENT DependRule (apply,Action) >

<!ATTLIST DependRule

 Prio CDATA #REQUIRED

 Status (None|Good|Unknown|Undefined|Warning|Error|Bad) #REQUIRED

 SevLevel (None|Good|Unknown|Undefined|Warning|Error|Bad) (Good)

 Dsc CDATA #IMPLIED

>

<!—see for dtd --!>

<!--see apply dtd --!>

<!—see action dtd --!>

Action Client DTD

<!ELEMENT NGOPAction (Authorization_File) >

<!ELEMENT Authorization_File (AuthorizedGroup)* >

<!ELEMENT AuthorizedGroup (User)* >

<!ATTLIST AuthorizedGroup

 ID CDATA #REQUIRED

>

<!ELEMENT User EMPTY >

<!ATTLIST User

 Name CDATA #REQUIRED

>

<!ELEMENT NGOPAction (Action_File) >

<!ELEMENT Action_File (Action)* >

<!ELEMENT Action (Host)* >

<!ATTLIST Action

ID CDATA #REQUIRED

>

<!ELEMENT Host (AuthorizedGroup , Exec)* >

<!ATTLIST Host

Name CDATA #REQUIRED

>

<!ELEMENT Exec EMPTY >

<!ATTLIST Exec

Path CDATA #REQUIRED

>

<!ELEMENT AuthorizedGroup EMPTY >

<!ATTLIST AuthorizedGroup

ID CDATA #REQUIRED

>
system

 system view

monitored element of “file system” type

 Potential “bad” problem

 “Bad” status

 “Good” status

PAGE
31

